Abstract

A hybrid multiphase model is developed to simulate the simultaneous momentum, heat and mass transfer and heterogeneous catalyzed reaction in structured catalytic porous materials. The approach relies on the combination of the volume of fluid (VOF) and Eulerian–Eulerian models, and several plug-in field functions. The VOF method is used to capture the gas–liquid interface motion, and the Eulerian–Eulerian framework solves the temperature and chemical species concentration equations for each phase. The self-defined field functions utilize a single-domain approach to overcome convergence difficulty when applying the hybrid multiphase for a multi-domain problem. The method is then applied to investigate selective removal of specific species in multicomponent reactive evaporation process. The results show that the coupling of catalytic reaction and interface species mass transfer at the phase interface is conditional, and the coupling of catalytic reaction and momentum transfer across fluid–porous interface significantly affects the conversion rate of reactants. Based on the numerical results, a strategy is proposed for matching solid catalyst with operating condition in catalytic distillation application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.