Abstract

The generalized bioavailability model (gBAM) has been proposed as an alternative to the biotic ligand model (BLM) for modeling bioavailability and chronic toxicity of copper (Cu). The gBAM combines a log-linear effect of pH on free Cu2+ ion toxicity with BLM-type parameters for describing the protective effects of major cations (calcium [Ca]2+ , magnesium [Mg]2+ , and sodium [Na]+ ). In the present study, a Windermere Humic Aqueous Model (WHAM) VII-based gBAM for fish was parametrized based on an existing chronic (30-d) dataset of juvenile rainbow trout (Oncorhynchus mykiss). The model, with defined parameters (pH slope parameter [SpH ] = 0.4449 and biotic ligand competition constants [log KCaBL = 4.0, log KMgBL = 3.4, and log KNaBL = 3.0]), was shown to accurately predict the effects of pH, dissolved organic carbon, Ca, and Mg on chronic Cu toxicity to juvenile rainbow trout at the effect levels relevant for environmental risk assessment (i.e., median prediction error of 1.3-fold for 10 and 20% lethal concentrations). The gBAM predicted the effect of pH more accurately than a previously published Cu BLM for juvenile rainbow trout, especially at pH > 8. We also evaluated the cross-species and cross-life stage applicability of the newly developed juvenile rainbow trout gBAM using existing chronic Cu toxicity data with early life stages of fathead minnow (Pimephales promelas) and rainbow trout. We did this because using a single bioavailability model for all fish species and life stages is practical from a regulatory point of view. Although the early life stage datasets exhibit considerable uncertainties, 91% of the considered toxicity values at the effect levels most relevant in European environmental regulations (10% effect on survival or growth) were predicted within a 2-fold error. Overall, the chronic Cu gBAM we developed is a valuable alternative for the existing chronic Cu BLM for rainbow trout and performs sufficiently well to be used in risk assessment according to currently accepted standards of bioavailability model performance (from the current European regulatory point of view). However, our analysis also suggests that bioavailability relations differ between different fish life stages and between endpoints (e.g., mortality vs growth), which is currently not accounted for in environmental risk assessments. Environ Toxicol Chem 2020;39:2424-2436. © 2020 SETAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.