Abstract
Let X be a polyhedron, and let Fx denote the contravariant functor consisting of fiber homotopy types of Hurewicz fibrations over a given base whose fibers are homotopy equivalent to X. A fundamental theorem on fiber spaces states that Fx is a representable homotopy functor and a universal space for Fx is the classifying space for the topological monoid of self-equivalences of X [2; 5]. Frequently, algebraic topological information about the associated universal fibration yields information about arbitrary fibrations with fiber (homotopy equivalent to) X. However, present knowledge of the algebraic topological properties of the universal base space is extremely limited except in some special cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.