Abstract

The range of ▿ ∧ (u ∧ B) is determined for an axisymmetric poloidal incompressible B and incompressible u, by solving ▿ ∧ (u ∧ B) = ▿ ∧ v for u, assumed to be confined to within a surface of revolution. Two constraints on V are shown to be necessary for the existence of solutions, viz that the integral of rç/|B| must vanish on each flux surface, and that the integral of v1 around any dosed field line must vanish. The construction of the general solution proves that the constraints are sufficient conditions, providing also that the second derivative, with respect to the poloidal flux function, of the volume contained by flux surfaces does not vanish. The general solution is stated for the homogeneous case, v = 0. For the particular case of poloidal v1 an integral property of the solution u is established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.