Abstract

In this paper, we show the relationship between two seemingly unrelated approximation techniques. On the one hand, a certain class of Gaussian process-based interpolation methods, and on the other hand inverse distance weighting, which has been developed in the context of spatial analysis where there is often a need for interpolating from irregularly spaced data to produce a continuous surface. We develop a generalization of inverse distance weighting and show that it is equivalent to the approximation provided by the class of Gaussian process-based interpolation methods. The equivalence is established via an elegant application of Riesz representation theorem concerning the dual of a Hilbert space. It is thus demonstrated how a classical theorem in linear algebra connects two disparate domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.