Abstract
In this work, a general tight-binding based energy decomposition analysis (EDA) scheme for intermolecular interactions is proposed. Different from the earlier version [Xu et al., J. Chem. Phys. 154, 194106 (2021)], the current tight-binding based density functional theory (DFTB)-EDA is capable of performing interaction analysis with all the self-consistent charge (SCC) type DFTB methods, including SCC-DFTB2/3 and GFN1/2-xTB, despite their different formulas and parameterization schemes. In DFTB-EDA, the total interaction energy is divided into frozen, polarization, and dispersion terms. The performance of DFTB-EDA with SCC-DFTB2/3 and GFN1/2-xTB for various interaction systems is discussed and assessed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.