Abstract

A general nonlocal nonlinear Schrodinger equation with shifted parity, charge-conjugate and delayed time reversal is derived from the nonlinear inviscid dissipative and equivalent barotropic vorticity equation in a $$\beta $$ -plane. The modulational instability (MI) of the obtained system is studied, which reveals a number of possibilities for the MI regions due to the generalized dispersion relation that relates the frequency and wavenumber of the modulating perturbations. Exact periodic solutions in terms of Jacobi elliptic functions are obtained, which, in the limit of the modulus approaches unity, reduce to soliton, kink solutions and their linear superpositions. Representative profiles of different nonlinear wave excitations are displayed graphically. These solutions can be used to model different blocking events in climate disasters. As an illustration, a special approximate solution is given to describe a kind of two correlated dipole blocking events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.