Abstract

A recently introduced nonlinear Fokker-Planck equation, derived directly from a master equation, comes out as a very general tool to describe phenomenologically systems presenting complex behavior, like anomalous diffusion, in the presence of external forces. Such an equation is characterized by a nonlinear diffusion term that may present, in general, two distinct powers of the probability distribution. Herein, we calculate the stationary-state distributions of this equation in some special cases, and introduce associated classes of generalized entropies in order to satisfy the H-theorem. Within this approach, the parameters associated with the transition rates of the original master-equation are related to such generalized entropies, and are shown to obey some restrictions. Some particular cases are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.