Abstract

Modeling the chemical erosion of carbon materials due to low-energy H+ impact is of paramount importance for the prediction of the behavior of carbon-based plasma-facing components in nuclear fusion devices. In this paper a simple general model describing both energy and temperature dependence of carbon-based chemical erosion is presented. Enlightened by Hopf’s model {Hopf et al., [J. Appl. Phys. 94, 2373 (2003)}, the chemical erosion is separated into the contributions from three mechanisms: thermal chemical erosion, energetic chemical sputtering, and ion-enhanced chemical erosion. Using input from the Monte Carlo code TRIDYN, this model is able to reproduce experimental data well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.