Abstract

We consider a large family of problems in which an ordering (or, more precisely, a chain of subsets) of a finite set must be chosen to minimize some weighted sum of costs. This family includes variations of min sum set cover, several scheduling and search problems, and problems in Boolean function evaluation. We define a new problem, called the min sum ordering problem (MSOP), which generalizes all these problems using a cost and a weight function defined on subsets of a finite set. Assuming a polynomial time α-approximation algorithm for the problem of finding a subset whose ratio of weight to cost is maximal, we show that under very minimal assumptions, there is a polynomial time [Formula: see text]-approximation algorithm for MSOP. This approximation result generalizes a proof technique used for several distinct problems in the literature. We apply this to obtain a number of new approximation results. Summary of Contribution: This paper provides a general framework for min sum ordering problems. Within the realm of theoretical computer science, these problems include min sum set cover and its generalizations, as well as problems in Boolean function evaluation. On the operations research side, they include problems in search theory and scheduling. We present and analyze a very general algorithm for these problems, unifying several previous results on various min sum ordering problems and resulting in new constant factor guarantees for others.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.