Abstract

It is often important to include prestress in computational models of biological tissues. The prestress can represent residual stresses (stresses that exist after the tissue is excised from the body) or in situ stresses (stresses that exist in vivo, in the absence of loading). A prestressed reference configuration may also be needed when modeling the reference geometry of biological tissues in vivo. This research developed a general framework for representing prestress in finite element models of biological materials. It is assumed that the material is elastic, allowing the prestress to be represented via a prestrain. For prestrain fields that are not compatible with the reference geometry, the computational framework provides an iterative algorithm for updating the prestrain until equilibrium is satisfied. The iterative framework allows for enforcement of two different constraints: elimination of distortion in order to address the incompatibility issue, and enforcing a specified in situ fiber strain field while allowing for distortion. The framework was implemented as a plugin in FEBio (www.febio.org), making it easy to maintain the software and to extend the framework if needed. Several examples illustrate the application and effectiveness of the approach, including the application of in situ strains to ligaments in the Open Knee model (simtk.org/home/openknee). A novel method for recovering the stress-free configuration from the prestrain deformation gradient is also presented. This general purpose theoretical and computational framework for applying prestrain will allow analysts to overcome the challenges in modeling this important aspect of biological tissue mechanics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.