Abstract
We introduce and study a general class of shock models with dependent inter-arrival times of shocks that occur according to the homogeneous Poisson generalized gamma process. A lifetime of a system affected by a shock process from this class is represented by the convolution of inter-arrival times of shocks. This class contains many popular shock models, namely the extreme shock model, the generalized extreme shock model, the run shock model, the generalized run shock model, specific mixed shock models, etc. For systems operating under shocks, we derive and discuss the main reliability characteristics (namely the survival function, the failure rate function, the mean residual lifetime function and the mean lifetime) and study relevant stochastic comparisons. Finally, we provide some numerical examples and illustrate our findings by the application that considers an optimal mission duration policy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.