Abstract

Heat waves and dry spells are analyzed (i) at eight stations in south Moravia (Czech Republic), (ii) in the control ECHAM3 GCM run at the gridpoint closest to the study area, and (iii) in the ECHAM3 GCM run for doubled CO2 concentrations (scenario A) at the same gridpoint (heat waves only). The GCM outputs are validated both against individual station data and areally representative values. In the control run, the heat waves are too long, appear later in the year, peak at higher temperatures and their numbers are under- (over-) estimated in June and July (in August). The simulated dry spells are too long, and the annual cycle of their occurrence is distorted. Mid- tropospheric circulation, and heat waves and dry spells are linked much less tightly in the control climate than in the observed. Since mid-tropospheric circulation is simulated fairly successfully, we suggest the hypothesis that either the air-mass transformation and local processes are too strong in the model or the simulated advection is too weak. In the scenario A climate, the heat waves become a common phenomenon: warming of 4.5C in summer (difference between scenario A and control climates) induces a five-fold increase in the frequency of tropical days and an immense enhancement of extremity of heat waves. The results of the study underline the need for (i) a proper validation of the GCM output before a climate impact study is conducted and (ii) translation of large-scale information from GCMs into local scales using downscaling and stochastic modelling techniques in order to reduce GCMs' biases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.