Abstract

The Lennard-Jones potential is widely used to describe the interlayer interactions within layered materials like graphene. However, it is also widely known that this potential strongly underestimates the frictional properties for layered materials. Here, we propose to supplement the Lennard-Jones potential by a Gaussian-type potential, which enables more accurate calculations of the frictional properties of two-dimensional layered materials. Furthermore, the Gaussian potential is computationally simple as it introduces only one additional potential parameter that is determined by the interlayer shear mode in the layered structure. The resulting Lennard-Jones-Gaussian potential is applied to compute the interlayer cohesive energy and frictional energy for graphene, MoS2, black phosphorus, and their heterostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.