Abstract

We propose a Gauss–Newton-type method for nonlinear constrained optimization using the exact penalty introduced recently by Andre and Silva for variational inequalities. We extend their penalty function to both equality and inequality constraints using a weak regularity assumption, and as a result, we obtain a continuously differentiable exact penalty function and a new reformulation of the KKT conditions as a system of equations. Such reformulation allows the use of a semismooth Newton method, so that local superlinear convergence rate can be proved under an assumption weaker than the usual strong second-order sufficient condition and without requiring strict complementarity. Besides, we note that the exact penalty function can be used to globalize the method. We conclude with some numerical experiments using the collection of test problems CUTE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.