Abstract

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome associated with Ca2+ leak predominantly caused by ryanodine receptor 2 (RyR2) mutations. We identified a R1760W-RyR2 mutation located between the N-terminal domain and the central domain of RyR2 in a CPVT patient by DNA sequencing. Recombinant mutant RyR2-2801mcherry plasmid generated by the overlap extension polymerase chain reaction and seamless cloning was transfected in HEK293 cells for the cell model. Single-cell luminal and cytosolic Ca2+ imaging was measured by endoplasmic reticulum (ER) luminal Ca2+ -sensitive protein D1ER and Fura-2 AM on a confocal laser scanning microscope, respectively. We found that in RyR2 mutant cells, the propensity for store-overload-induced Ca2+ release (SOICR) was enhanced representing increased Ca2+ oscillations, reduced activation and termination thresholds of spontaneous Ca2+ release; and the sensitivity to cytosolic Ca2+ activation was increased manifesting reduced steady state ER Ca2+ levels. Our results indicated that R1760W-RyR2 mutation induced calcium leak, representing a gain of function. Further, antiarrhythmic drugs propafenone and flecainide significantly suppressed SOICR caused by the R1760W-RyR2 mutation at a concentration of 20 μM, which was lower than the concentration at which carvedilol suppressed SOICR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.