Abstract

This paper proposes an approach to estimate reliability of a storm water drain (SWD) network in fuzzy framework. It involves: (i) use of proposed fuzzy Monte-Carlo simulation (FMCS) methodology to estimate fuzzy reliability of conduits in the network, (ii) construction of a reliability block diagram (RBD) for the network (system) using suggested guidelines, and (iii) use of the RBD and reliability estimates of the conduits in the network to compute system reliability based on a proposed procedure. In addition, a system reliability based methodology is proposed for design/retrofitting of SWD network by optimization of its conduit dimensions. Conventionally used reliability analysis approaches assume that the cumulative distribution function (CDF) of performance function (marginal safety) of conduits follows Gaussian distribution, which cannot be ensured in the real world scenario. The proposed approach alleviates the need for making such assumptions and can account for linguistic ambiguity in variables defining the performance function. Effectiveness of the proposed approach is demonstrated on a hypothetical SWD network and a real network in Bangalore, India. Comparison of the results obtained from the proposed approach with those from conventional Monte-Carlo simulation (MCS) reliability assessment approach indicated that the estimate of system reliability and conduit reliability are higher with FMCS approach. Consequently, conduit dimensions required to attain required system (network) reliability could be expected to be lower when FMCS approach is used for designing or retrofitting a system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.