Abstract
The boundary of urban built-up areas is the baseline data of a city. Rapid and accurate monitoring of urban built-up areas is the prerequisite for the boundary control and the layout of urban spaces. In recent years, the night light satellite sensors have been employed in urban built-up area extraction. However, the existing extraction methods have not fully considered the properties that directly reflect the urban built-up areas, like the land surface temperature. This research first converted multi-source data into a uniform projection, geographic coordinate system and resampling size. Then, a fused variable that integrated the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) night light images, the Moderate-resolution Imaging Spectroradiometer (MODIS) surface temperature product and the normalized difference vegetation index (NDVI) product was designed to extract the built-up areas. The fusion results showed that the values of the proposed index presented a sharper gradient within a smaller spatial range, compared with the only night light images. The extraction results were tested in both the area sizes and the spatial locations. The proposed index performed better in both accuracies (average error rate 1.10%) and visual perspective. We further discussed the regularity of the optimal thresholds in the final boundary determination. The optimal thresholds of the proposed index were more stable in different cases on the premise of higher accuracies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.