Abstract

Rational design of efficient, stable oxygen evolution reaction (OER) catalysts is necessary for widespread adoption of electrochemical energy storage technologies. Achieving this goal requires elucidation of fundamental relationships between surface structure and reaction mechanism. Here we address this issue using ab initio computations to determine the surface structure and OER mechanism for LaNiO3, a perovksite oxide that exhibits high activity but low stability. We find a new OER mechanism in which lattice oxygen participation via reversible formation of surface oxygen vacancies is critical. We show that this mechanism has a lower reaction barrier compared to the generally proposed mechanism, leading to improved agreement with experimental data. Extending the study to La1–xSrxBO3 (B = transition metal), we demonstrate a transition to the lattice oxygen-mediated mechanism with decreasing catalyst stability. Our results suggest new approaches for next-generation catalysts design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.