Abstract

Current research efforts in parallel architecture usually evolve from designs of a processor-memory-connection architecture with rudimentary facilities for synchronization and communication, which are often found to be inadequate to support the more sophisticated usages. In order to remedy this problem, we favor a top-down design, where the primitive operations are selected via a careful and thorough analysis of the high-level general purpose applications to be supported by the architecture. In this paper, we study how a high-level process-synchronization specification, presented in the path expression language, can be translated into a fully parallel implementation on an MIMD shared memory architecture and what primitive support facilities are necessary to achieve this. Primary emphasis is obviously on the simplicity of the system, the low synchronization overhead of the algorithm, the efficiency of the primitives, and the relative ease of system implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.