Abstract
Currently, the diagnosis of malocclusion is a highly demanding process involving complicated examinations of the dental occlusion, which increases the demand for innovative tools for occlusal data monitoring. Nevertheless, continuous wireless monitoring within the oral cavity is challenging due to limitations in sampling and device size. In this study, by embedding high-performance piezoelectric sensors into the occlusal surfaces using flexible printed circuits, a fully integrated, flexible, and self-contained transparent aligner is developed. This aligner exhibits excellent sensitivity for occlusal force detection, with a broad detection threshold and continuous pressure monitoring ability at eight distinct sites. Integrated with machine learning algorithm, this fully integrated aligner can also identify and track adverse oral habits that can cause/exacerbate malocclusion, such as lip biting, thumb sucking, and teeth grinding. This system achieved 95% accuracy in determining malocclusion types by analyzing occlusal data from over 1400 malocclusion models. This fully-integrated sensing system, with wireless monitoring and machine learning processing, marks a significant advancement in the development of intraoral wearable sensors. Moreover, it can also facilitate remote orthodontic monitoring and evaluation, offering a new avenue for effective orthodontic care.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.