Abstract

Accurate classification of tooth development stages from orthopantomograms (OPG) is crucial for dental diagnosis, treatment planning, age assessment, and forensic applications. This study aims to develop an automated method for classifying third molar development stages using OPGs. Initially, our data consisted of 3422 OPG images, each classified and curated by expert evaluators. The dataset includes images from both Q3 (lower jaw left side) and Q4 (lower right side) regions extracted from panoramic images, resulting in a total of 6624 images for analysis. Following data collection, the methodology employs region of interest extraction, pre-filtering, and extensive data augmentation techniques to enhance classification accuracy. The deep neural network model, including architectures such as EfficientNet, EfficientNetV2, MobileNet Large, MobileNet Small, ResNet18, and ShuffleNet, is optimized for this task. Our findings indicate that EfficientNet achieved the highest classification accuracy at 83.7%. Other architectures achieved accuracies ranging from 71.57 to 82.03%. The variation in performance across architectures highlights the influence of model complexity and task-specific features on classification accuracy. This research introduces a novel machine learning model designed to accurately estimate the development stages of lower wisdom teeth in OPG images, contributing to the fields of dental diagnostics and treatment planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.