Abstract

Bipolar circuits have high drive capability with low delay sensitivity to load while CMOS circuits have low power dissipation and high packing density. Combining both bipolar and MOS transistors on one monolithic substrate, Bipolar-CMOS (BiCMOS) circuits have high drive capability and low power dissipation at the expense of increased fabrication complexity. A major problem with conventional BiCMOS circuits is the reduced output swing due to the bipolar output transistors. This paper presents a novel BiCMOS circuit which uses bootstrapping to attain a full logic swing at the output. We present a design equation to estimate the size of the bootstrap capacitance as a function of power supply voltage. Simulations were performed using parameters from a 2.0 /spl mu/m CMOS process with NPN option at supply voltages of 3.3 and 5 V. The circuit is a practical design which improves on the delay and power performance of previous bootstrapped BiCMOS inverters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.