Abstract

A solar chemical energy storage system with photochemical process and thermochemical process is proposed to convert full-spectrum solar energy into chemical energy. The ultraviolet and part of visible sunlight are firstly absorbed by norbornadiene derivatives, and the norbornadiene derivatives are converted into the related quadricyclane derivatives. When the quadricyclane derivatives are catalyzed, they are converted back to the norbornadiene derivatives for next cycle. The storage and releasing cycle are eco-friendly without CO2 emission. The rest of solar energy, which cannot be used in the solar photochemical process, are exploited by solar thermochemical process, providing heat for methanol decomposition. It is demonstrated that solar photochemical efficiency increases firstly and then it decreases with the increase of cut-off wavelength, while the solar thermochemical efficiency declines with the cut-off wavelength rising. In the hybrid system, the decrease of the solar thermochemical efficiency is balanced by an increase of the solar photochemical efficiency, and the maximum solar-to-chemical efficiency of the hybrid system reaches 68.7%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.