Abstract

Bioconversion of food waste (FW) by black soldier fly larvae (BSFL) has great potential in generating high-quality organic fertilizers (insect frass). However, the stabilization of BSFL frass and its fertilizing effect on crops remain largely unexplored. Here, a full recycling chain mediated by BSFL from FW source to end application was systematically evaluated. BSFL were reared on FW containing 0 %–6 % of rice straw. Straw addition alleviated the high salinity of BSFL frass (Na decreased from 5.9 % to 3.3 %). Specifically, 4 % straw addition significantly enhanced larval biomass and conversion rates, producing fresh frass with a higher humification degree. Lactobacillus (57.0 %–79.9 %) strongly prevailed in almost all fresh frass. A 32-day secondary composting process continued to increase the humification degree of 4 % straw-added frass. Major indicators e.g., pH, organic matter (OM), NPK of final compost basically met the organic fertilizer standard. Application of composted frass fertilizers (0 %–6 %) substantially improved soil OM, nutrients availability and enzyme activities. Moreover, 2 % frass application had optimal enhancing impacts on the height and weight, root activity, total phosphorus and net photosynthetic rate of maize seedling. These findings gave an insight into the BSFL-mediated FW conversion process and proposed the rational application of BSFL frass fertilizer in maize.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.