Abstract

A full finite difference time domain methodology is developed for electromagnetic wave propagation in a plasma. The finite difference grid is consistent with central difference approximation of the curl, divergence and gradient operators that appear in the joint equations of Euler and Maxwell, and the coupling effects between the fluid velocity and the electric field. To accomplish the time advancement, the central difference approximation is invoked for the time derivatives and leapfrog concepts are employed. The resulting difference equations converge to the exact equations, provided that the developed stability requirement is satisfied. Finally, numerical results are provided and compared with the inverse fast Fourier transform results of closed‐form, frequency domain solutions for the half space problem; the agreement between solutions is shown to be excellent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.