Abstract

This article introduces a new frequency domain approach for either MIMO system identification or source separation of convolutive mixtures of cyclostationary signals. We apply the joint diagonalization algorithm to a set of cyclic spectral density matrices of the measurements to identify the mixing system at each frequency bin up to permutation and phase ambiguity matrices. An efficient algorithm to overcome the frequency-dependent permutations and to recover the phase, even for non-minimum-phase channels, based on cyclostationarity is also presented. The new approach exploits the fact that each input signal has a different and specific cyclic frequency. Simulation examples are presented to illustrate the effectiveness of this approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.