Abstract

The authors propose an innovative technique for dealing with optimal shape design problems that exploits the flexibility of the virtual element method in generating meshes composed of general polygonal and polyhedral elements. Virtual element method and finite element method can coexist on the same discretized domain; therefore, the possibility of dealing with hanging nodes and gluing sub-domain meshes is ensured. Accordingly, the shape synthesis of a magnetic pole is considered as the case study. It is shown that the proposed technique is effective in handling the shape variations dictated by an algorithm of evolutionary optimisation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.