Abstract

We present a framework for the construction of linearizations for scalar and matrix polynomials based on dual bases which, in the case of orthogonal polynomials, can be described by the associated recurrence relations. The framework provides an extension of the classical linearization theory for polynomials expressed in nonmonomial bases and allows us to represent polynomials expressed in product families, that is, as a linear combination of elements of the form $\phi_i(\lambda) \psi_j(\lambda)$, where $\{ \phi_i(\lambda) \}$ and $\{ \psi_j(\lambda) \}$ can either be polynomial bases or polynomial families which satisfy some mild assumptions. We show that this general construction can be used for many different purposes. Among them, we show how to linearize sums of polynomials and rational functions expressed in different bases. As an example, this allows us to look for intersections of functions interpolated on different nodes without converting them to the same basis. We then provide some constructions ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.