Abstract

We give an algorithmic and lower-bound framework that facilitates the construction of subexponential algorithms and matching conditional complexity bounds. It can be applied to a wide range of geometric intersection graphs (intersections of similarly sized fat objects), yielding algorithms with running time 2O(n1−1/d) for any fixed dimension d≥ 2 for many well known graph problems, including Independent Set, r-Dominating Set for constant r, and Steiner Tree. For most problems, we get improved running times compared to prior work; in some cases, we give the first known subexponential algorithm in geometric intersection graphs. Additionally, most of the obtained algorithms work on the graph itself, i.e., do not require any geometric information. Our algorithmic framework is based on a weighted separator theorem and various treewidth techniques. The lower-bound framework is based on a constructive embedding of graphs into d-dimensional grids, and it allows us to derive matching 2Ω(n1−1/d) lower bounds under the Exponential Time Hypothesis even in the much more restricted class of d-dimensional induced grid graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.