Abstract
Research focuses on the efficacy of Multi-Task Autoencoder (MTAE) models in signal classification due to their ability to handle many tasks while improving feature extraction. However, researchers have not thoroughly investigated the study of lung sounds (LSs) for pulmonary disease detection. This paper introduces a new framework that utilizes an MTAE model to detect lung diseases based on LS signals. The model integrates an autoencoder and a supervised classifier, simultaneously optimizing both classification accuracy and signal reconstruction. Furthermore, we propose a hybrid approach that combines an MTAE and a Support Vector Machine (MTAE-SVM) to enhance performance. We evaluated our model using LS signals from a publicly available database from King Abdullah University Hospital. The model attained an accuracy of 89.47% for four classes (normal, pneumonia, asthma, and chronic obstructive pulmonary disease) and 90.22% for three classes (normal, pneumonia, and asthma cases). Using the MTAE-SVM, the accuracy was further improved to 91.49% for four classes and 93.08% for three classes, respectively. The results indicate that the MTAE and MTAE-SVM have a considerable potential for detecting pulmonary diseases from lung sound signals. This could aid in the creation of more user-friendly and effective diagnostic tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.