Abstract

The increasing penetration of nonsynchronous renewable energy sources (NS-RES) and demand side-technologies alter the dynamic characteristics, and particularly, the frequency behavior of a power system. Given this, we propose a framework for assessing renewable integration limits concerning power system frequency performance using a time-series scenario based approach. By considering a large number of future scenarios and their sensitivities with respect to different parameters, we can identify maximum nonsynchronous instantaneous penetration limits for a wide range of possible scenarios. Further, we derive a dynamic inertia constraint and incorporate it into the market dispatch model to reduce the detrimental impacts of high NS-RES penetration on the frequency performance. The results using the Australian future grid as a test case show that such an explicit inertia constraint ensures power system frequency stability for all credible contingencies. To improve the frequency performance, we assess and quantify the contribution of a wide range of technologies, including synchronous condensers, synthetic inertia from wind farms and a governor-like response from de-loaded wind farms. The results show that the last option is the most effective one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.