Abstract

Several key fracture-mechanics parameters associated with the onset of subcritical and critical cracking, specifically the fracture toughness, crack-resistance curve, and fatigue threshold, have recently been reported for the superelastic alloy Nitinol, in the product form of the thin-walled tube that is used to manufacture several biomedical devices, most notably endovascular stents. In this study, we use these critical parameters to construct simple decision criteria for assessing the quantitative effect of crack-like defects in such Nitinol devices with respect to their resistance to failure by deformation or fracture. The criteria are based on the (equivalent) crack-initiation fracture toughness and fatigue threshold stress-intensity range, together with the general yield strength and fatigue endurance strength, and are used to construct a basis for design against single-event (overload) failures as well as for time-/cycle-delayed failures associated with fatigue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.