Abstract

A thermodynamic model based on the reaction-adsorption two-step formation mechanism was improved by introducing fractal theory to predict hydrate phase equilibria in porous media. The surface effect on phase equilibrium of porous media system was modified by considering the shape of the pore edge, which was supposed to hold a fractal feature as von Koch curve. A fractional dimension Laplace equation was established in describing the phase equilibrium conditions of methane, ethane, propane, and carbon dioxide hydrates in silica gel pores. The calculated results showed that when the shape of the pore edge is assumed as spherical, the calculations by the thermodynamics model developed are close or a little superior to those of traditional van der Waals-Platteeuw type models. When the surface effect of the pore edge shape is introduced, the absolute average deviations for silica gel systems can be further decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.