Abstract

SummaryOstm1 mutations cause the severe form of osteopetrosis with bone marrow deficiency in humans and mice, yet a role in T cell ontogeny remains to be determined. Herein, we show that thymi of the Ostm1-null mice (gl/gl) from P8-to-P15 become markedly hypocellular with disturbed architecture. Analysis of gl/gl early T cell program determined a major decrease of 3-fold in bone marrow common lymphoid precursors (CLP), 35-fold in early thymic precursors (ETPs) and 100-fold in T cell double positive subpopulations. Ostm1 ablation in T cell double negative (DN) also appears to induce fast-paced differentiation kinetics with a transitory intermediate CD44+CD25int subpopulation. Transgenic targeting Ostm1 expression from the gl/gl DN1 population partially rescued T cell subpopulations from ETP onwards and normalized the accelerated DN differentiation, indicating a cell-autonomous role for Ostm1. Transcriptome of early DN1 population identified an Ostm1 crosstalk with a Foxo1-Klf2-S1pr1-Gnai1-Rac1 signaling axis. Our findings establish that Ostm1 is an essential regulator of T cell ontogeny.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.