Abstract

The design of cyber-physical systems (CPSs) faces various new challenges that are unheard of in the design of classical real-time systems. Power optimization is one of the major design goals that is witnessing such new challenges. The presence of interaction between the cyber and physical components of a CPS leads to dependence between the time delay of a computational task and the amount of workload in the next iteration. We demonstrate that it is essential to take this delay-workload dependence into consideration in order to achieve low power consumption. In this paper, we identify this new challenge, and present the first formal and comprehensive model to enable rigorous investigations on this topic. We propose a simple power management policy, and show that this policy achieves a best possible notion of optimality. In fact, we show that the optimal power consumption is attained in a “steady-state” operation and a simple policy of finding and entering this steady state suffices, which can be quite surprising considering the added complexity of this problem. Finally, we validated the efficiency of our policy with experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.