Abstract

We study several Fokker-Planck equations arising from a stochastic chemical kinetic system modeling a gene regulatory network in biology. The densities solving the Fokker-Planck equations describe the joint distribution of the mRNA and <i>μ</i>RNA content in a cell. We provide theoretical and numerical evidence that the robustness of the gene expression is increased in the presence of <i>μ</i>RNA. At the mathematical level, increased robustness shows in a smaller coefficient of variation of the marginal density of the mRNA in the presence of <i>μ</i>RNA. These results follow from explicit formulas for solutions. Moreover, thanks to dimensional analyses and numerical simulations we provide qualitative insight into the role of each parameter in the model. As the increase of gene expression level comes from the underlying stochasticity in the models, we eventually discuss the choice of noise in our models and its influence on our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.