Abstract
Ca2+ binding to calmodulin in the pCa range 5.5-7.0 exposes hydrophobic sites that bind hydrophobic inhibitory ligands, including calmodulin antagonists, some Ca2+-antagonists and calmodulin-binding proteins. The binding of these hydrophobic ligands to calmodulin can be followed by the approx. 80% fluorescence increase they produce in dansylated (5-dimethylaminonaphthalene-1-sulphonylated) calmodulin (CDRDANS). In the presence of Ca2+, calmodulin binds the calmodulin inhibitor, R24571, with an affinity of approx. 2-3 nM and hydrophobic ligands, including trifluoperazine (TFP), W-7 [N-(6-aminohexyl)-5-chloronaphthalene-1-sulphonamide], fendiline, felodipine and prenylamine, with affinities in the micromolar range. This binding is strongly Ca2+-dependent and Mg2+-independent. Calmodulin shows a reasonably high degree of specificity in its binding of these ligands over other ligands tested. CDRDANS, therefore, provides a convenient and simple means of monitoring the interaction of a variety of hydrophobic ligands with the Ca2+-dependent regulatory protein, calmodulin. CDRDANS binds to phospholipid vesicles made of (dimyristoyl)phosphatidylcholine (DMPC) or (dipalmitoyl)phosphatidylcholine (DPPC) and produces fluorescence increases only in the presence of Ca2+ and at temperatures above their gel-to-liquid crystalline phase transition. Although the fluorescence changes in CDRDANS accurately report phase transitions in these liposomes, its binding to these vesicles is weak. Calmodulin probably requires a high-affinity lipid-bound receptor protein for its high-affinity binding to natural membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.