Abstract

AbstractFlexible graphene‐based paper electrodes (FGPEs) are a new class of study and the research on this electrode material has been carried out for approximately ten years. FGPEs have many advantages compared to classical solid electrodes such as being flexible, foldable, adaptable to flexible electronics, being cut, easily shaped, and effective and adjustable modification. In this work, the applicability of FGPEs modified with polyindole (PIN) thin films and zinc oxide nanoparticles (ZnO‐NPs) to energy‐storage systems as a supercapattery design is presented, and especially the limitations of ZnO‐NPs for energy‐storage applications are revealed to inform researchers working for a similar purpose. Capacitance calculations have been performed using both cyclic voltammetry (CV) and galvanostatic charge‐discharge (GCD) experiments. It was observed that the rGO/PIN paper demonstrated almost 30 times more energy‐storage capacity than that of the rGO/PIN/ZnO paper due to the electrochemical instability of ZnO‐NPs on the flexible electrode platform at the applied potential region in 1.0 M HClO4 solution. The rGO/PIN paper with a highly flexible property exhibited an energy density of 74.5 W h cm−2 and a power density of 2258 W cm−2 at a current density of 2.2 mA cm−2, revealing hopeful results for future modular and flexible approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.