Abstract

Latently infected cells form the major obstacle to HIV eradication. Studies of HIV latency have been generally hindered by the lack of a robust and rapidly deployable cell model that involves primary human CD4 T lymphocytes. Latently infected cell lines have proven useful, but it is unclear how closely these proliferating cells recapitulate the conditions of viral latency in non-dividing CD4 T lymphocytes in vivo. Current primary lymphocyte models more closely reflect the in vivo state of HIV latency, but they are limited by protracted culture periods and often low cell yields. Additionally, these models are always established in a single latently infected cell type that may not reflect the heterogeneous nature of the latent reservoir. Here we describe a rapid, sensitive, and quantitative primary cell model of HIV-1 latency with replication competent proviruses and multiple reporters to enhance the flexibility of the system. In this model, post-integration HIV-1 latency can be established in all populations of CD4 T cells, and reactivation of latent provirus assessed within 7 days. The kinetics and magnitude of reactivation were evaluated after stimulation with various cytokines, small molecules, and T-cell receptor agonists. Reactivation of latent HIV proviruses was readily detected in the presence of strong activators of NF-κB. Latently infected transitional memory CD4 T cells proved more responsive to these T-cell activators than latently infected central memory cells. These findings reveal potentially important biological differences within the latently infected pool of memory CD4 T cells and describe a flexible primary CD4 T-cell system to evaluate novel antagonists of HIV latency.

Highlights

  • Within days after initial infection, HIV-1 establishes a persistent latent reservoir in resting CD4 T cells and possibly other cell types in all infected subjects [1,2,3]

  • Cells were incubated with antibody-bound magnetic beads to isolate total CD4 T cells (CD3+CD4+) or memory (CD4+CD45RO+) CD4 T cells from the peripheral blood of uninfected human volunteers

  • To determine if additional latent provirus could be reactivated, we evaluated prostratin in combination with histone deacetylase (HDAC) inhibitors

Read more

Summary

Introduction

Within days after initial infection, HIV-1 establishes a persistent latent reservoir in resting CD4 T cells and possibly other cell types in all infected subjects [1,2,3]. Infected cells harbor integrated HIV-1 proviral DNA but are otherwise indistinguishable from uninfected cells. One approach for attacking the latent reservoir is to use activating compounds that induce transcription of the latent provirus and translation of HIV proteins but that are not toxic to uninfected CD4 T cells. To identify such activators and to better understand the biological underpinnings of HIV latency, a robust, flexible, and easy to construct model of HIV latency in primary CD4 T cells is urgently needed

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.