Abstract

The development of highly active, cheap, and stable electrocatalysts for overall water splitting is strategic for industrial electrolysis processes aiming to achieve sustainable hydrogen production. Here, we report the impressive electrocatalytic activity of the oxygen evolution reaction of Al-doped Ni(OH)2 deposited on a chemically etched carbon nanotube forest (CNT-F) supported on a flexible polymer/CNT nanocomposite. Our monolithic electrode generates a stable current density of 10 mA/cm2 at an overpotential (η) of 0.28 V toward the oxygen evolution reaction in 1 M NaOH and reaches approximately 200 mA/cm2 at 1.7 V versus the reversible hydrogen electrode in 6 M KOH. The CNT-F/NiAl electrode also shows an outstanding activity for the hydrogen evolution reaction under alkaline conditions. When CNT-F/NiAl is used both at the anode and at the cathode, our device can sustain the overall water splitting, reaching 10 mA/cm2 at η = 1.96 V. The high electrocatalytic activity of the CNT-F/NiAl hydroxide is due ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.