Abstract

This paper presents a novel, dual-band, four-port multi-input–multi-output (MIMO) antenna for 28/38 GHz millimeter wave 5G wearable applications. In the proposed work, we have used a novel design approach to get the dual-band behavior from a MIMO design with a small footprint of 18 × 8.5 × 0.25 mm3. For this purpose, each MIMO element is designed as a composite form of a circular and elliptical structure connected with a narrow strip and fed by a tapered feedline. The peak realized gains and total efficiencies of the antenna, evaluated in free space, are 4.15 dBi, 7.73 dBi and 80.13%, 85.44% at 28 GHz and 38 GHz frequencies, respectively. To appraise the thorough behavior of the MIMO antenna, we have evaluated all the parameters of the antenna: Envelope Correlation Coefficient (ECC), Diversity Gain (DG), Mean Effective Gain (MEG), Channel Capacity Loss (CCL), and Total Active Reflection Coefficient (TARC), and found them satisfactory. Channel capacity of the antenna at SNR = 20 dB is found to be 21.61 bps/Hz. For wearable applications, the proposed 4-port MIMO antenna is designed on a flexible Rogers 3003 substrate, and the performance is checked by evaluating bending analysis. The safety of the antenna is verified by analyzing the 1 g/10 g SAR at 28/38 GHz and the corresponding average SAR values are 0.11/0.08 W/kg and 0.05/0.04 W/kg, respectively. All the average SAR values for the proposed MIMO antenna are within the acceptable limits according to FCC/ICNIRP standards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.