Abstract

This paper presents two mathematical models representing imprecise capacitated fixed-charge transportation problems for a two-stage supply chain network in Gaussian fuzzy type-2 environment. It is a two-stage transportation process from a manufacturing center to m potential distribution centers (DCs) and then from DCs to business centers of n retailers with particular demands. Retailers are situated at some distances apart. Here unit transportation costs, fixed charges, availabilities, and demands are imprecise and represented by Gaussian type-2 fuzzy numbers. The proposed models are formulated as profit maximization problems in such a way that some DCs are selected in order to satisfy the demands at all retailers. The type-2 fuzziness has been removed by using generalized credibility measure developed with the help of CV-based reduction method and hence the models are reduced to chance constrained programming problems with different credibility labels. The deterministic models are then solved using both genetic algorithm (GA) based on Roulette wheel selection, arithmetic crossover with uniform mutation and modified particle swarm optimization (PSO), where the position of each particle is adjusted according to its own experience and that of its neighbors. Finally models are illustrated with some numerical data. Some sensitivity analyses on the proposed models are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.