Abstract
We studied three-dimensional honeycomb-structure boron nitride (BN) allotrope using first-principles calculations and the tight-binding method. Interconnected by sp3-bonding at the vertices, hexagonal BN nanoribbons construct highly-porous, covalently-bonded hexagonal BN nanoribbons (CBBNs). We investigated the structural and mechanical properties of CBBNs with various sizes, compared with those of carbon and other BN allotropes. The mechanical and thermal stabilities are also checked. Our calculations show that, despite the high porosity and low mass density, CBBNs are stable and mechanically hard materials as cubic BN. Moreover, our calculated results suggest that CBBNs can be regarded as a binary alloy of sp2- and sp3-bonded BNs following the Vegard's rule in average bond lengths and bulk moduli. Calculated band structures show that the band gap of CBBNs has similar variation upon increasing size as BN nanoribbons and is also limited by the second-neighbor interaction between the pz states of sp2-bonded atoms in adjacent nanoribbons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.