Abstract

We have investigated the interaction of Mg/Ni interface and its hydrogen adsorption characteristics using first-principles calculations to obtain a better understanding of the Mg/Ni interface as a hydrogen storage material. The smallest work of adhesion of Mg/Ni interface is 4.28J/m2 with AB stacking sequence in the studied systems. Hydrogen adsorption energy and electronic structures were evaluated to study the interaction characteristics between hydrogen and Mg/Ni interface. The hydrogen adsorption is energetically favored on all considered sites. The hydrogen atom prefers to adsorb on the tetrahedral site of the Ni side of the interface owning the lowest adsorption energy. The plane-averaged charge density and the density of states analysis indicate that the absorption of hydrogen could stabilize the Mg/Ni interface owing to the strongly bonding interactions between hydrogen atom and the host Mg and Ni atoms. Therefore, Mg/Ni interface provides a promising medium for hydrogen storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.