Abstract
The influence of nonlinear thermal radiation on the flow of a viscous fluid between two infinite parallel plates is investigated. The lower plate is solid, fixed and heated, while the upper is porous and capable of moving toward or away from the lower plate. The effects of nonlinear thermal radiation are incorporated in the energy equation by using Rosseland approximation. The similarity transformations have been used to obtain a system of ordinary differential equations. A finite element algorithm, known as Galerkin method, has been employed to obtain the solution of the resulting system of differential equations. It is observed that the radiation parameter Rd increases the temperature of the fluid in all the cases considered. Same is the case with temperature ratio parameter θ w . The influence of the concerned parameters on the local rate of heat transfer is also displayed with the help of graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.