Abstract

This study presents a new scheme for performing integration point constitutive updates for anisotropic, small strain, non-linear viscoelasticity, within the context of implicit, non-linear finite element structural analysis. While the basic scheme has been presented earlier by the authors for linear viscoelasticity, the present work illustrates the generality of the underlying fundamentals by extending to Schapery's non-linear model. The method features a judicious choice of state variables, a stable backward Euler integration step, and a consistent tangent operator. Its greatest strength lies in ready incorporation into existing FEM codes. Numerical examples involving homogeneous stress states such as uniaxial extension and simple shear, and non-uniform stress states such as a beam under tip load, were carried out by incorporating the present scheme into a general purpose FEM package. Excellent agreement with analytical results is observed. Copyright © 1999 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.