Abstract

Tidal deformation of the Earth is normally calculated using the analytical solution with some simplified assumptions, such as the Earth is a perfect sphere of continuous media. This paper proposes an alternative way, in which the Earth crust is discontinuous along its boundaries, to calculate the tidal deformation using a finite element method. An in-house finite element code is firstly introduced in brief and then extended here to calculate the tidal deformation. The tidal deformation of the Earth due to the Moon was calculated for an geophysical earth model with the discontinuous outer layer and compared with the continuous case. The preliminary results indicate that the discontinuity could have different effects on the tidal deformation in the local zone around the fault, but almost no effects on both the locations far from the fault and the global deformation amplitude of the Earth. The localized deformation amplitude seems to depend much on the relative orientation between the fault strike direction and the loading direction (i.e. the location of the Moon) and the physical property of the fault.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.