Abstract
Calculating dynamical diffraction patterns for X-ray diffraction imaging techniques requires numerical integration of the Takagi-Taupin equations. This is usually performed with a simple, second-order finite difference scheme on a sheared computational grid in which two of the axes are aligned with the wavevectors of the incident and scattered beams. This dictates, especially at low scattering angles, an oblique grid of uneven step sizes. Here a finite difference scheme is presented that carries out this integration in slab-shaped samples on an arbitrary orthogonal grid by implicitly utilizing Fourier interpolation. The scheme achieves the expected second-order convergence and a similar error to the traditional approach for similarly dense grids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Crystallographica Section A Foundations and Advances
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.