Abstract
The proton spin-lattice relaxation time T1, in the nematic liquid crystal 4-pentyl-4′-cyanobiphenyl confined in a glassy porous matrix has been measured in a wide Larmor frequency range of 1 · 102−2 · 107 Hz employing the fast field-cycling NMR technique. A strong influence of the restricted geometry on the character of the T1 dispersion was found. Our investigation clearly demonstrates the importance of the translationally induced molecular reorientations in inhomogeneous director field for the relaxation in the samples with 200 and 80 nm mean pore size. The experimental results are in a good agreement with the theoretical predictions. In the sample with 7 nm pore size the main contribution to the relaxation is ascribed to the slowing down of the molecular motion in the near-surface layer. Zero-field 1H NMR spectra of a microconfined liquid crystal are reported for the first time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.